资源类型

期刊论文 119

年份

2023 6

2022 6

2021 7

2020 5

2019 4

2018 5

2017 5

2016 3

2015 6

2014 12

2013 3

2012 5

2011 4

2010 6

2009 8

2008 9

2007 5

2006 3

2005 4

2004 3

展开 ︾

关键词

参数估计 2

工艺参数 2

性能参数 2

结构参数 2

1)幂模型 1

2R-1C模型;嵌入式系统;参数估计;非迭代方法;二次型 1

BP神经网络 1

B样条函数 1

CO2泡沫 1

GM(1 1

HY-2 1

HY-2 卫星 1

Hilbert变换 1

LS算法 1

SCEM-UA 1

W-M分形模型 1

三点弯曲梁 1

不确定性评估 1

展开 ︾

检索范围:

排序: 展示方式:

Deviation correction strategy for the earth pressure balance shield based on shield–soil interactions

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0676-4

摘要: The control system presently used in shield posture rectification is based on driver experience, which is marginally reliable. The study of the related theory is flawed. Therefore, a decision-making approach for the deviation correction trajectory and posture rectification load for an earth pressure balance (EPB) shield is proposed. A calculation model of posture rectification load of an EPB shield is developed by considering the interactions among the cutter head, shield shell, and ground. The additional position change during the shield attitude correction is highlighted. The posture rectification loads and shield behaviors results can be solved by the proposed method. The influences of the stratum distribution (i.e., bedrock height in the upper-soft and lower-hard strata) on shield behaviors and posture rectification loads are analyzed. Results indicated that the increase of pitch angle in the upper-soft and lower-hard strata causes a sharp rise in vertical displacement. The bedrock height increases the magnitudes of the required posture rectification moments when hr/D > 0.5. For a tunnel with hr/D ≤ 0.5, the variation of hr/D has little effect on the posture rectification moments. Finally, the posture rectifying curves based on the theoretical model are compared with the target ones based on the double circular arc interpolation method. The required results can be obtained regardless of the soil–rock compound stratum distribution. The maximum rectification moment in the rock layer is almost 12.6 times that in the soil layer. Overall, this study provides a valuable reference for moment determination and the trajectory prediction of posture rectification in compound strata.

关键词: additional position change     deviation correction trajectory     earth pressure balance shield     mechanical model     posture rectification    

Multiple target implementation for a doubly fed induction generator based on direct power control under unbalanced and distorted grid voltage

Heng NIAN,Yi-peng SONG

《信息与电子工程前沿(英文)》 2015年 第16卷 第4期   页码 321-334 doi: 10.1631/FITEE.1400170

摘要: This paper presents a multiple target implementation technique for a doubly fed induction generator (DFIG) under unbalanced and distorted grid voltage based on direct power control (DPC). Based on the mathematical model of DFIG under unbalanced and distorted voltage, the proportional and integral (PI) regulator is adopted to regulate the DFIG average active and reactive powers, while the vector PI (VPI) resonant regulator is used to achieve three alternative control targets: (1) balanced and sinusoidal stator current; (2) smooth instantaneous stator active and reactive powers; (3) smooth electromagnetic torque and instantaneous stator reactive power. The major advantage of the proposed control strategy over the conventional method is that neither negative and harmonic sequence decomposition of grid voltage nor complicated control reference calculation is required. The insensitivity of the proposed control strategy to DFIG parameter deviation is analyzed. Finally, the DFIG experimental system is developed to validate the availability of the proposed DPC strategy under unbalanced and distorted grid voltage.

关键词: Direct power control     Doubly fed induction generator     Unbalanced and distorted grid voltage     Vector proportional and integral resonant regulator     Parameter deviation    

A reliable and practical reference objective for the deviation diagnosis of energy system parameters

Liping LI, Zheng LI,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 440-445 doi: 10.1007/s11708-009-0051-8

摘要: The core objective to optimize a complex energy system is to set the reference target to guide the parameter adjustment of system operation. In this paper, a new case-based approach is proposed based on an online performance assessment program and its long-term operation data for a large power unit. The online model of a coal-fired power unit’s performance assessment is demonstrated, and the distribution pattern of the performance index is revealed by statistical analysis of the abundant data. The fundamental issues (representation of the similarity of two thermal processes, similarity measure, etc.) are tackled. The key sections and key parameters for the completion of similarity determination are proposed, which are essential to realize a case-based strategy. A full-scope simulator of power unit is used to test the availability of the method. The advantage of the case-based approach is the integrality of information over other methods.

关键词: energy system     case-based     optimization     power unit operation     performance    

Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0703-5

摘要: In fiber laser beam welding (LBW), the selection of optimal processing parameters is challenging and plays a key role in improving the bead geometry and welding quality. This study proposes a multi-objective optimization framework by combining an ensemble of metamodels (EMs) with the multi-objective artificial bee colony algorithm (MOABC) to identify the optimal welding parameters. An inverse proportional weighting method that considers the leave-one-out prediction error is presented to construct EM, which incorporates the competitive strengths of three metamodels. EM constructs the correlation between processing parameters (laser power, welding speed, and distance defocus) and bead geometries (bead width, depth of penetration, neck width, and neck depth) with average errors of 10.95%, 7.04%, 7.63%, and 8.62%, respectively. On the basis of EM, MOABC is employed to approximate the Pareto front, and verification experiments show that the relative errors are less than 14.67%. Furthermore, the main effect and the interaction effect of processing parameters on bead geometries are studied. Results demonstrate that the proposed EM-MOABC is effective in guiding actual fiber LBW applications.

关键词: laser beam welding     parameter optimization     metamodel     multi-objective    

Scrutiny of non-linear differential equations Euler-Bernoulli beam with large rotational deviation by

M. R. AKBARI,M. NIMAFAR,D. D. GANJI,M. M. AKBARZADE

《机械工程前沿(英文)》 2014年 第9卷 第4期   页码 402-408 doi: 10.1007/s11465-014-0316-8

摘要:

The kinematic assumptions upon which the Euler-Bernoulli beam theory is founded allow it to be extended to more advanced analysis. Simple superposition allows for three-dimensional transverse loading. Using alternative constitutive equations can allow for viscoelastic or plastic beam deformation. Euler-Bernoulli beam theory can also be extended to the analysis of curved beams, beam buckling, composite beams and geometrically nonlinear beam deflection. In this study, solving the nonlinear differential equation governing the calculation of the large rotation deviation of the beam (or column) has been discussed. Previously to calculate the rotational deviation of the beam, the assumption is made that the angular deviation of the beam is small. By considering the small slope in the linearization of the governing differential equation, the solving is easy. The result of this simplification in some cases will lead to an excessive error. In this paper nonlinear differential equations governing on this system are solved analytically by Akbari-Ganji’s method (AGM). Moreover, in AGM by solving a set of algebraic equations, complicated nonlinear equations can easily be solved and without any mathematical operations such as integration solving. The solution of the problem can be obtained very simply and easily. Furthermore, to enhance the accuracy of the results, the Taylor expansion is not needed in most cases via AGM manner. Also, comparisons are made between AGM and numerical method (Runge-Kutta 4th). The results reveal that this method is very effective and simple, and can be applied for other nonlinear problems.

关键词: AGM     critical load of columns     large deformations of beam     nonlinear differential equation    

Determination of effective stress parameter of unsaturated soils: A Gaussian process regression approach

Pijush Samui, Jagan J

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 133-136 doi: 10.1007/s11709-013-0202-1

摘要: This article examines the capability of Gaussian process regression (GPR) for prediction of effective stress parameter ( ) of unsaturated soil. GPR method proceeds by parameterising a covariance function, and then infers the parameters given the data set. Input variables of GPR are net confining pressure ( ), saturated volumetric water content ( ), residual water content ( ), bubbling pressure ( ), suction ( ) and fitting parameter ( ). A comparative study has been carried out between the developed GPR and Artificial Neural Network (ANN) models. A sensitivity analysis has been done to determine the effect of each input parameter on . The developed GPR gives the variance of predicted . The results show that the developed GPR is reliable model for prediction of of unsaturated soil.

关键词: unsaturated soil     effective stress parameter     Gaussian process regression (GPR)     artificial neural network (ANN)     variance    

1000 MW ultra-supercritical turbine steam parameter optimization

FENG Weizhong

《能源前沿(英文)》 2008年 第2卷 第2期   页码 187-193 doi: 10.1007/s11708-008-0030-5

摘要: The 2 × 1000 MW ultra-supercritical steam turbine of Shanghai Waigaoqiao Phase III project, which uses grid frequency regulation and overload control through an overload valve, is manufactured by Shanghai Turbine Company using Siemens technology. Through optimization, the steam pressure is regarded as the criterion between constant pressure and sliding pressure operation. At high circulating water temperature, the turbine overload valve is kept closed when the unit load is lower than 1000 MW while at other circulating water temperatures the turbine can run in sliding pressure operation when the unit load is higher than 1000 MW and the pressure is lower than 27 MPa This increases the unit operation efficiency. The 3D bending technology in the critical piping helps to reduce the project investment and minimize the reheat system pressure drop which improves the unit operation efficiency and safety. By choosing lower circulating water design temperature and by setting the individual Boiler Feedwater Turbine condenser to reduce the exhaust steam flow and the heat load to the main condenser, the unit average back pressure and the terminal temperature difference are minimized. Therefore, the unit heat efficiency is increased.

Structural parameter design method for a fast-steering mirror based on a closed-loop bandwidth

Guozhen CHEN, Pinkuan LIU, Han DING

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 55-65 doi: 10.1007/s11465-019-0545-y

摘要: When a fast-steering mirror (FSM) system is designed, satisfying the performance requirements before fabrication and assembly is vital. This study proposes a structural parameter design approach for an FSM system based on the quantitative analysis of the required closed-loop bandwidth. First, the open-loop transfer function of the FSM system is derived. In accordance with the transfer function, the notch filter and proportional-integral (PI) feedback controller are designed as a closed-loop controller. The gains of the PI controller are determined by maximizing the closed-loop bandwidth while ensuring the robustness of the system. Then, the two unknown variables of rotational radius and stiffness in the open-loop transfer function are optimized, considering the bandwidth as a constraint condition. Finally, the structural parameters of the stage are determined on the basis of the optimized results of rotational radius and stiffness. Simulations are conducted to verify the theoretical analysis. A prototype of the FSM system is fabricated, and corresponding experimental tests are conducted. Experimental results indicate that the bandwidth of the proposed FSM system is 117.6 Hz, which satisfies the minimum bandwidth requirement of 100 Hz.

关键词: fast-steering mirror     structural parameter     PI controller     bandwidth     notch filter    

Energy efficient cutting parameter optimization

Xingzheng CHEN, Congbo LI, Ying TANG, Li LI, Hongcheng LI

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 221-248 doi: 10.1007/s11465-020-0627-x

摘要: Mechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.

关键词: energy efficiency     cutting parameter     optimization     machining process    

Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

Xueping PAN, Ping JU, Feng WU, Yuqing JIN

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 367-376 doi: 10.1007/s11465-017-0429-y

摘要:

A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper. Firstly, the parameters of the DFIG and the drive train are estimated locally under different types of disturbances. Secondly, a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results. The main benefit of the proposed scheme is the improved estimation accuracy. Estimation results confirm the applicability of the proposed estimation technique.

关键词: wind turbine generator     DFIG     drive train system     hierarchical parameter estimation method     trajectory sensitivity technique    

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1082-1094 doi: 10.1007/s11709-019-0537-3

摘要: An out-put only modal parameter identification method based on variational mode decomposition (VMD) is developed for civil structure identifications. The recently developed VMD technique is utilized to decompose the free decay response (FDR) of a structure into to modal responses. A novel procedure is developed to calculate the instantaneous modal frequencies and instantaneous modal damping ratios. The proposed identification method can straightforwardly extract the mode shape vectors using the modal responses extracted from the FDRs at all available sensors on the structure. A series of numerical and experimental case studies are conducted to demonstrate the efficiency and highlight the superiority of the proposed method in modal parameter identification using both free vibration and ambient vibration data. The results of the present method are compared with those of the empirical mode decomposition-based method, and the superiorities of the present method are verified. The proposed method is proved to be efficient and accurate in modal parameter identification for both linear and nonlinear civil structures, including structures with closely spaced modes, sudden modal parameter variation, and amplitude-dependent modal parameters, etc.

关键词: modal parameter identification     variational mode decomposition     civil structure     nonlinear system     closely spaced modes    

Optimal localization of complex surfaces in CAD-based inspection

XU Jinting, LIU Weijun, SUN Yuwen

《机械工程前沿(英文)》 2008年 第3卷 第4期   页码 426-433 doi: 10.1007/s11465-008-0068-4

摘要: Complex surface inspection requires the optimal localization of the measured surface related to the design surface so that the two surfaces can be compared in a common coordinate frame. This paper presents a new technique for solving the localization problem. The basic approach consists of two steps: 1) rough localization of the measured points to the design surface based on curvature features, which can produce a good initial estimate for the optimal localization; 2) fine localization based on the least-square principle so that the deviation between the measured surface and the design surface is minimized. To efficiently compute the closest points on the design surface of the measured points, a novel method is proposed. Since this approach does not involve an iterative process of solving non-linear equations for the closest points, it is more convenient and robust. The typical complex surface is used to test the developed algorithm. Analysis and comparison of experimental results demonstrate the validity and applicability of the algorithm.

关键词: deviation     comparison     non-linear     localization     inspection    

Shallow foundation response variability due to soil and model parameter uncertainty

Prishati RAYCHOWDHURY,Sumit JINDAL

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 237-251 doi: 10.1007/s11709-014-0242-1

摘要: Geotechnical uncertainties may play crucial role in response prediction of a structure with substantial soil-foundation-structure-interaction (SFSI) effects. Since the behavior of a soil-foundation system may significantly alter the response of the structure supported by it, and consequently several design decisions, it is extremely important to identify and characterize the relevant parameters. Moreover, the modeling approach and the parameters required for the modeling are also critically important for the response prediction. The present work intends to investigate the effect of soil and model parameter uncertainty on the response of shallow foundation-structure systems resting on dry dense sand. The SFSI is modeled using a beam-on-nonlinear-winkler-foundation (BNWF) concept, where soil beneath the foundation is assumed to be an assembly of discrete, nonlinear elements composed of springs, dashpots and gap elements. The sensitivity of both soil and model input parameters on shallow foundation responses are investigated using first-order second-moment (FOSM) analysis and Monte Carlo simulation through Latin hypercube sampling technique. It has been observed that the degree of accuracy in predicting the responses of the shallow foundation is highly sensitive soil parameters, such as friction angle, Poisson’s ratio and shear modulus, rather than model parameters, such as stiffness intensity ratio and spring spacing; indicating the importance of proper characterization of soil parameters for reliable soil-foundation response analysis.

关键词: shallow foun dation     sensitivity analysis     centrifuge data     first-order-second-moment (FOSM) method     parameter uncertainty    

Application and evaluation of optical distance measurements in geometrical quality testing of microgears

Albert ALBERS, Duotai PAN, Leif MARXEN, Claudia BECKE,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 261-269 doi: 10.1007/s11465-010-0100-3

摘要: Microgears are increasingly important in industry. Compared to normal gears, the quality assurance of microgears needs more accurately measured data and simple but feasible measurement methods because of their dimension particula

关键词: microgear     optical distance measurement     profile deviation     CWL sensor     micromechanical technology (MMT)    

Parameter studies on impact in a lap joint

Amir M. RAHMANI,Elizabeth K. ERVIN

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 64-77 doi: 10.1007/s11465-014-0322-x

摘要:

To represent a loose lap joint, a beam impacting four springs with gaps is modeled. Modal analysis with base excitation is solved, and time histories of contact points are closely monitored. Using the impulse during steady state response, six influential parameters are studied: damping ratio, contact stiffness, intermediate contact position, gap, excitation amplitude and beam height. For all parameters, the system response is highly controlled by modes with two contacting springs. Each parameter’s effect on system response is presented including unstable regions, unique trend behaviours result. Recommendations for structural designers are also noted.

关键词: impact mechanics     contact     joint behaviour     modal analysis     parameter study    

标题 作者 时间 类型 操作

Deviation correction strategy for the earth pressure balance shield based on shield–soil interactions

期刊论文

Multiple target implementation for a doubly fed induction generator based on direct power control under unbalanced and distorted grid voltage

Heng NIAN,Yi-peng SONG

期刊论文

A reliable and practical reference objective for the deviation diagnosis of energy system parameters

Liping LI, Zheng LI,

期刊论文

Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC

期刊论文

Scrutiny of non-linear differential equations Euler-Bernoulli beam with large rotational deviation by

M. R. AKBARI,M. NIMAFAR,D. D. GANJI,M. M. AKBARZADE

期刊论文

Determination of effective stress parameter of unsaturated soils: A Gaussian process regression approach

Pijush Samui, Jagan J

期刊论文

1000 MW ultra-supercritical turbine steam parameter optimization

FENG Weizhong

期刊论文

Structural parameter design method for a fast-steering mirror based on a closed-loop bandwidth

Guozhen CHEN, Pinkuan LIU, Han DING

期刊论文

Energy efficient cutting parameter optimization

Xingzheng CHEN, Congbo LI, Ying TANG, Li LI, Hongcheng LI

期刊论文

Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

Xueping PAN, Ping JU, Feng WU, Yuqing JIN

期刊论文

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

期刊论文

Optimal localization of complex surfaces in CAD-based inspection

XU Jinting, LIU Weijun, SUN Yuwen

期刊论文

Shallow foundation response variability due to soil and model parameter uncertainty

Prishati RAYCHOWDHURY,Sumit JINDAL

期刊论文

Application and evaluation of optical distance measurements in geometrical quality testing of microgears

Albert ALBERS, Duotai PAN, Leif MARXEN, Claudia BECKE,

期刊论文

Parameter studies on impact in a lap joint

Amir M. RAHMANI,Elizabeth K. ERVIN

期刊论文